Kapitel 1 – Einführung & Aussagenlogik

- Syntax: Wie werden Formeln gebildet.
- Semantik: Was ist die Bedeutung einer Formel.
- Kalkül: Wie kann die Gültigkeit einer Formel berechnet werden?
- Reihenfolge der Priorität (abnehmend): $\neg, \land, \lor, \oplus, \rightarrow, \leftrightarrow$
- Interpretation mithilfe einer Belegung P (v : F → B)

```
\begin{array}{l} \nu(x) = \nu_0(x) \; \mathrm{f}\ddot{\mathrm{u}} \mathrm{r} \; x \in \mathcal{P} \\ \nu(\top) = 1 \\ \nu(\bot) = 0 \\ \nu(\neg P) = \mathrm{if} \; \; \nu(P) = 1 \; \mathrm{then} \; 0 \; \mathrm{else} \; 1 \\ \nu(P \lor Q) = \mathrm{if} \; \; \nu(P) = 0 \; \mathrm{then} \; \; \nu(Q) \; \mathrm{else} \; 1 \\ \nu(P \land Q) = \nu(\neg(\neg P \lor \neg Q)) \\ \nu(P \to Q) = \nu(\neg P \lor Q) \\ \nu(P \leftrightarrow Q) = \nu((P \to Q) \land (Q \to P)) \\ \nu(P \oplus Q) = \nu(\neg(P \leftrightarrow Q)) \end{array}
```

- Erfüllbarkeit: gibt Belegung für True
- Kontingenz: gibt Belegung für True und für False
- Tautologie: jede Belegung ist True
- Kontradiktion/Unerfüllbar: jede Belegung gibt False
- Semantische Äquivalenz: $P \equiv Q$ äquivalent zu $\models P \leftrightarrow Q$
- Semantische Folgerung: $P \vDash Q$ äquivalent zu $\vDash P \rightarrow Q$
- Äquivalenzumformungen: Distributivgesetze, Absorptionsgesetze, Kommutativität, Assoziativität, Doppelte Negation, DeMorgansche Gesetze
- SAT: Ist eine gegebene Formel P erfüllbar oder nicht.
- Alle state-of-the-art-Solver benützen CNF (Konjunktive Normalform)
- **Erfüllbarkeitsäquivalenz**: Zwei Formeln P und Q sind erfüllbarkeitsäqivalent, falls gilt: P ist erfüllbar genau dann, wenn Q erfüllbar ist. (schwächer als Äquivalenz) $x \to y$ und $z \land u \lor v$ sind erfüllbarkeitsäquivalent
- Tseitin-Plaisted-Greenbaum: Ein Verfahren zum Erstellen der CNF Ersetze P = A ∨ (B ∧ C) zu P' = (A ∨ x) ∧ (¬x ∨ N) ∧ (¬x ∨ C)
 Vorteil: keine Verdopplung von A, keine exponentielles Wachstum
 Nachteil: Es kann mehr erfüllende Belegungen geben als im Ursprüngliche P
- Üblicherweiße Darstellung im DIMACS-Format (Jede Zeile endet mit einer 0)

Kapitel 2 - Der DPLL Algorithmus

- Grundidee: Fallunterscheidung und Vereinfachungen (UP)
- **Subsumption**: Klausel C subsumiert Klausel D $C \subseteq D \rightarrow C \models D \rightarrow \{C, D\} \equiv \{C\}$
- **Resolution**: $C \cup \{\neg x\}$ und $D \cup \{x\} \rightarrow C \cup D$
- Unit Resolution: $C \cup \{\neg x\}$ und $\{x\} \rightarrow C$
- Empty Clause (v(P) = 0): Mit aktueller Belegung wertet die Klausel zu 0 aus. \rightarrow gesamte Formel P damit nicht erfüllbar
- Worst-Case: Alle 2ⁿ Belegungen müssen geprüft werden
 → tritt in der Praxis quasi nie auf (Heuristiken, ...)

Heuristiken

- numpos(x): Anzahl der positiven Vorkommen der Variable x in unerfüllten Klauseln
- numneg(x): Anzahl der negativen Vorkommen der Variable x in unerfüllten Klauseln
- **DLCS** (Dynamic Largest Combined Sum): Wähle als nächste Variable x mit der größten Summe: numpos(x) +ü numneg(x) (Idee: häufig vorkommende Variablen haben großen Einfluss)
- **DLIS** (Dynamic Largest Individual Sum): Wähle als nächste Variable x mit dem größten numpos(x) oder numneg(x) (Idee: häufig vorkommende Variablen haben großen Einfluss)
- MOM (Maximum occurence in clauses of minimal size): Wähle die Variable, deren Vorkommen in kurzen Klauseln maximal ist. (Idee: kurze Klauseln haben mehr Aussagekraft)
- Aktivitätsheuristiken: Wähle die Variable, die am aktivsten ist. Input: Clauseset C

Kapitel 3 – CDCL SAT Solving

- Conflict Driven Clause Learning
- Idee: Lerne im Konfliktfall eine zusätzliche Klausel. Nichtchronologisches Backtracking
- Typen von Klauseln die man lernen kann:
 - Jeder Schnitt im Implikationsgraphen, der Entscheidungsvariablen von Konfliktvariablen trennt, ist ein gültiger Cut
 - o 1st new clause: Aus Resolution der Konflikte
 - 1UIP (First Unique Implication Point): Solange resolvieren bis die Klausel Unit ist.
 - decision clause: enthält nur noch Entscheidungsvariablen
- Klauseln werden durch Resolution von Reason und Conflict Clause erstellt.
- Der Algorithmus gibt nur dann SAT zurück, wenn erfüllende Belegung α gefunden wurde. Partielle Korrektheit + Termination \Rightarrow Totale Korrektheit

Kapitel 4 – CDCL SAT-Solving Zutaten

- Klausellernen
- Nicht-Chronologisches Backtracking
- Gute Auswahlheuristik (z.B. VSIDS (variable state independent decaying sum))
- Effiziente Unit Propagation (watched literals)
- Restarts mit Clause Deletions (lokale Minima vermeiden, 1. Restart nach 100 Klauseln, 2. Restart nach 150, 3. Restart nach 300 Klauseln)
- zu finden in MiniSAT (< 1000 Zeilen Code)

Kapitel 5 – Implementierung effizienter SAT Solver

Aktivitätsheuristik (VSIDS):

- Jede Variable bekommt eine Aktivität zugewiesen. Initial ist die Aktivität gleich der Anzahl der Vorkommen in den Klauseln.
- Für jede gelernte Klausel erhöhe die vorkommenden Variablen
- Teile periodisch alle Aktivitäten durch einen Faktor
- Wähle stets die Variable mit höchster Aktivität.

```
Output: SAT or UNSAT
level = 0:
\alpha = \emptyset;
while true do
    \mathsf{UP}(C,\alpha);
    if C contains an empty clause then
         ec = empty clause;
         level = analyzeConf(ec, C);
         if |eve| == -1 then
          ∟ return UNSAT
         backtrack(level) ;
    else
         if \alpha \models C then
          ∟ return SAT
         |evel| = |evel| + 1:
         choose x \notin \alpha:
         \alpha = \alpha \cup [x \mapsto 0];
```

Effiziente Unit Propagation:

- SAT Solver befinden sich ca. 90% der Zeit in Unit Propagation
- Durch UP wird der exponentiell wachsende Lösungsraum eingeschränkt
- Idee: Es genügt die Information ob Klausel Unit oder Leer ist
- Es genügt 2 Literale pro Klausel zu beobachten → Watched Literals
- *Vorteil*: Die Anzahl der Referenzen pro Klausel ist konstant 2 (nach Backtracking können die aktuellen Referenzen beibehalten werden)

Nachteil: Komplette Klausel muss geprüft werden um zu wissen ob UNIT oder UNSAT

Verbessertes Lernen:

- **Self-Subsuming Resolution**: Resolution zwischen zwei Klauseln $A \cup \lambda$ und $B \cup \{\neg \lambda\}$ wobei $A \subset B$. Die Resolvente ist dann B und subsumiert die Klausel $B \cup \{\neg \lambda\}$.
- **Lokale Minimierung**: Berechne die 1UIP Klausel. Führe Self-Subsuming Resolution in umgekehrter Belegungsreihenfolge der Literale aus (Resolution jeweils mit den Reasons der Belegung)
- **Rekursive Minimierung**: Ein Literal kann aus der 1UIP Klausel u entfernt werden, wenn alle Literals seiner Reason im Implikationsgraph von Literalen aus u dominiert werden.

Clause Deletion:

- N-order learning: Nur Klauseln mit n oder weniger Literalen werden gelernt.
- M-size relevanze-based learning: Klauseln warden nur temporär gelernt.
- K-bounded learning: Klauseln mit weniger als k Variablen werden gespeichert. Größere Klauseln werden gelöscht sobald sie nicht mehr unit sind.

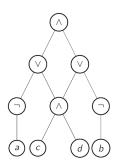
Restart Strategien:

- Anzahl der Konflikte nach denen neu gestartet wird, wird mit jedem Restart erhöht.
- Luby Sequenz: 20, 40, 20, 40, 80, 20, 40, 80, 160, ...

Kapitel 6 - Non-CNF SAT-Solving

- Problem: Anwendungsprobleme liegen zunächst nicht in Normalform (CNF) vor
- *Idee*: SAT-Solving auf nicht-normalisierten Formeln
- Klauseldarstellung nicht mehr möglich → DAT-Darstellung
- Spezielle Regeln für innere Knoten AV ¬
- Integration moderner Techniken: CDCL, watched Literals
- **Don't case-Propagation**: Hängt der Wert eines Knotens nicht mehr vom Wert einer der Teilformeln ab, so kann der Teilformel der Wert * (don't care) zugewiesen werden. (Implementierung: Watched-Literals-Schema)
- Grundidee des Konfliktlernens: Ausgehende von beiden Belegungen der Konfliktvariable die Belegungen zurückverfolgen. Die gelernte Klausel ist die Disjunktion der negierten Variablen aus der NoGood-Menge. → 1UIP-Lernen
- Gründe für Belegungen merken:
 - Decision: Aufgrund von gewählter Belegung
 - o Parent: Setzen der Variable aufgrund des Wertes eines Elternknotens
 - o Child: Setzen der Variable aufgrund des Wertes eines Kindknotens
 - o NoGood: Setzen der Variable aufgrund eines gelernten NoGood

Zusammenfassung: Keine CNF-Konversion erforderlich, enthält Formelstruktur, schnelle BCP und CDCL möglich, komplizierte Implementierung, kompliziertere Datenstruktur



level := 0:

while true do

else

unitPropgation();

if a conflict is reached then
 level := analyseConflict();

if level = 0 then return false

backtrack(level);

if formula is satisfied then

level := analyseSAT();
if level = 0 then

L return true
backtrack(level)

level := level + 1;

(wrt. the q-level); $\alpha := \alpha \cup [x \mapsto 0]$;

choose an unassigned $x \in var(P)$

Kapitel 7 – QBF Solving

- QBF-Solving ist PSPACE-vollständig
- Umwandlung in Pränexe Normal Form (PNF) notwendig $Q_1x_1,\ldots,Q_nx_n\psi$ dabei ist ψ quantorenfrei
- Zusätzliche Quantifikationslevel (QL) (pro Quantorenwechsel)
 Variablen von außen nach innen wählen. Innerhalb QL wählbar.
 UP auch über QL hinweg.
- E(C) Literale mit existenzquantifizierten Variablen
- U(C) Literale mit allquantifizierten Variablen
- ql(x) Quantifikationslevel einer Variable x
- Empty Clause: Eine Klausel C ist unerfüllbar, wenn

```
\circ \quad \forall e \in E(C) \text{ gilt } v(e) = \bot
```

- $\lor \forall u \in U(C) \text{ gilt } v(u) = \top$
- Unit Clause: Eine Klausel C ist unit, wenn

```
\circ \exists e \in E(C): v(e) = nil
```

- $\lor \forall u \in U(C): v(u) \neq \mathsf{T}$
- Allquantifizierte Variablen erhalten ein Flag, damit beide Belegungen getestet werden
- Formatierung im QDIMACS Format (Solver: Quaffle, Quantor, QuBE, SKizzo)
- Erweiterungen auf PSAT (parametric SAT) und PQSAT (parametric QSAT)
 Lösungsansatz PQSAT: Top-Level DPLL und an jedem Blatt SAT/QBF
 Lösungsansatz PSAT: Clause Distribution, Model Enumeration, DNNF

Kapitel 9 – MaxSAT und Pseudo Boolesche Optimierung

- MaxSAT: Finde eine Belegung, welche die Anzahl erfüllter Klauseln maximiert.
- Partial MaxSAT: Es gibt harte Klauseln die erfüllt sein müssen.
- Weighted MaxSAT: Alle Klauseln sind weich, aber mit verschiedenen Gewichten versehen.

Notation: (c, w) bei harten Klauseln $w = \infty$

Branch & Bound Algorithmus →

Berechnet die minimalen Kosten

- MaxSAT lösen mit Hilfe von SAT Solving Vorteil: Verwendung effizienter Techniken aus SAT Idee: Rufe iterativ SAT Solver auf bis Optimum gefunden ist
- SAT-basierter Ansatz von Le Berre: Liefert nicht zwangsläufig immer den kleinsten UNSAT core
- Fu & Malik Algorithmus →
 - Idee: Prüfe iterativ mit Hilfe eines SAT Solvers (mit unsat core), ob Instanz erfüllbar ist.
- PM2 Algorithmus: Optimierung von Fu & Malik Algorithmus.
 Jede Klausel erhält nur eine blocking Variable. Limitiere
 Erfüllbarkeit der blocking Variablen durch cardinality constraint.

```
Input: MaxSAT Instanz \varphi, Obergrenze UB \varphi = \text{simplifyFormula}(\varphi) if \varphi = \emptyset oder \varphi enthält nur leere Klauseln then \bot return \#\text{emptyClauses}(\varphi) LB = \#\text{emptyClauses}(\varphi) + \text{underestimation}(\varphi) if LB \geq UB then \bot return UB x = \text{selectVariable}(\varphi) UB = \min(UB, BnB(\varphi_x, UB))
```

return min(UB, $BnB(\varphi_{\bar{x}}, UB)$)

```
Input: Partial MaxSAT Instanz \varphi cost \leftarrow 0 while true do (st, \varphi_c) \leftarrow SAT(\varphi) if st = SAT then return cost BV \leftarrow \emptyset foreach C \in \varphi_c do | \textbf{if } C \text{ is } soft \text{ then} | b \leftarrow \text{ new blocking variable} | \varphi \leftarrow \varphi \setminus \{C\} \cup \{C \lor b\} | BV \leftarrow BV \cup \{b\} | if BV = \emptyset then return None \varphi \leftarrow \varphi \cup CNF(\sum_{b \in BV} b = 1) cost \leftarrow cost + 1
```

Seite 4 von 6

• WPM1 Algorithmus: Erweiterung von Fu & Malik Algorithmus zu Partial Weighted MaxSAT.

Kapitel 10 – Software Verifikation mit Bounded Model Checking

- Softwareverifikation: Beweis der Korrektheit eines Programms mit mathematischen Methoden Grundsätzliche Einschränkung: Es kann nur verifiziert werden, was zuvor spezifiziert wurde. Bei falscher Spezifikation bringt Verifikation nichts. ...
 - Universelle Spezifikationen: keine Nullpointer Dereferenzierung, kein Arrayüberlauf, nur positive Werte in unsigned Variablen, ...
- Verschiedene Verfahren zur Softwareverifikation
 - Software Bounded Model Checking (SBMC) (Dicht am Quellcode, weitgehend automatisiert, aber begrenzte Schleifendurchläufe/Rekursionen)
 - Theorembeweiser (Ausdrucksstark, bedarf menschlicher Begleitung)
 - Hoare-Logik mit Theorembeweiser
 - o Konventionelle Statische Codeanalyse

Ein formales Modell für Software

- Formalisierung eines Programms als Transition System
- Zustand speichert: Stand des Program Counter, Variablenbelegungen, Ausführungsstack
- Gegenbeispiel: Können bestimmte "schlechte" Programmzustände (error locations) erreicht werden? (Reachability Problem)

Bit Vektoren

- Ein Bit-Vektor der Länge n ist eine Sequenz von n Boolschen Variablen. b[i] notiert das i-te Bit von Vektor b (von links, beginnend mit 0).
- Bit Blasting: Eingabeformel wird in Bit-Vektor Arithmetik umgewandelt. Beispiel: Auas 32 Bit integer wird eine Bit-Vektor

Bounded Model Checking

- Zur Übersetzung eines Programms in die Bitvektorgleichung sind 5 Schritte notwendig:
 - o Syntaktischen Zucker der Programmiersprache entfernen
 - Schleifen k-mal ausrollen
 - o Programm in Single Static Assignment Form transferieren
 - o Bitvektorgleichung für einzelne Zuweisungen erstellen
 - o Übersetzen der Bitvektorgleichung mit Hilfe von Bit-Blasting in Aussagenlogische Formel

Kapitel 11 – SAT Modulo Theories (SMT Solving)

- Codierung nach SAT zwar oft problemlos möglich, aber Codierungen werden oft zu groß
- Für viele Theorien sind bereits Entscheidungsverfahren bekannt, die mehr Domänenwissen einbeziehen, als eine Codierung nach SAT
 - (Gleichheitslogik, uninterpretierte Funktionen, lineare Arithmetik, Arrays, Zeigerlogik, ...)
- Kombinierte Theorien: Wenn zwei Theorien T₁ und T₂ in einer Formel kombiniert werden, besitzen beide Signaturen von T₁ und T₂ gemeinsame Symbole, welche eventl. nicht dieselbe Bedeutung (selbe Relation bzgl. Des Universums) haben. Eines muss umbenannt werden.
 - → Theorie ist (bei uns) eine Menge von Modellen
 - Die Kombination $T_1 \oplus T_2$ von T_1 und T_2 ist die Menge aller Modelle B, deren Reduktum₁ isomorph ist zu einem Modell von T_1 und deren Reduktum₂ isomorph zu einem Modell von T_2 .
- Assoziiere mit jeder Signatur Σ eine Signatur Ω , die enthält aussagenlogische Konstanten von Σ und die Menge an neuen aussagenlogischen Symbolen mit derselben Kardinalität.

Kongruenzhüllen Algorithmus: Initialisierung – Vereinigen – Kongruenzhülle bilden

Ansätze zum Entscheiden von SMT Problemen

- Eager Approach: Übersetze gesamtes Problem in eine erfüllbarkeitsäguivalente Formel in Aussagenlogik und benutze SAT Solver.
- Lazy Approach: Rufe speziellen Theory Solver auf, wenn er gebraucht wird. Was sollte ein Theorie T-Solver können? Model Generation, Conflict Set Generation, Incrementality, Backtrackability, Deduction of Unassigned Literals and Interface Equalities
- Offline Integration: einfach, aber SAT wird immer wieder neu gestartet
- Online Integration: intelligentere Integrationsform, Backtracking und Lernen des DPLL-Solvers kann vom T-Solver profitieren, aber T-DPLL profitiert nicht automatisch von **Input**: \mathcal{T} -Formel φ , \mathcal{T} -Belegung Γ Verbesserungen im SAT Solving
- Das **T-DPLL Framework** →

Kombination von Theorien

- Nelson-Oppen Methode: Eigener Solver für jede Theorie und die Solver können "Interface"-Informationen untereinander austauschen.
- Die Theorien müssen die folgenden Eigenschaften erfüllen:
 - T₁, ..., T_n sind quantorenfreie first-order Theorien mit Gleichheit
 - Es gibt jeweils eine Entscheidungsprozedur für T₁,...,T_n
 - Die Signaturen sind disjunkt, d.h. für alle

$$1 \le i < j \le n, \Sigma_i \cup \Sigma_j = \emptyset$$

- T₁,..., T_n werden über unendlichen Domänen interpretiert (z.B. lineare Arithmetik über R, aber nicht Theorie der endlichen breiten Bit Vektoren)
- Die Methode wird wesentlich effizienter wenn zusätzlich gilt, dass die Theorien auch konvex sind.
- Konvexe Theorie: Wenn eine Formel eine Disjunktion von Gleichungen impliziert, impliziert sie mindestens eine dieser Gleichungen separat.
- Durch **Purification** werden die Theorien aufgeteilt und erhalten Interfacevariablen zur angrenzenden Theorie.
- Bei nicht konvexen Theorien ist ein Case-Split notwendig als 4ter Schritt.
- Eingabe: Konjunktion φ über verschiedenen konvexen Theorien T_1, \ldots, T_n
- Ausgabe: SAT, wenn φ erfüllbar ist, UNSAT sonst
- **1 Purification:** Purifizieren von φ zu $\varphi' = \{F_1, \dots, F_n\}$ mit $F_i \in T_i$.
- **2** T_i -Decision: Wende Entscheidungsverfahren für T_i auf F_i an
 - Wenn ein i existiert, so dass Fi in Ti nicht erfüllbar ist, Rückgabe: UNSAT
- **3** Equality Propagation: Wenn i und j existieren, so dass
 - F_i in T_i eine "Interface"-Gleichung a = b mit zwischen T_i und T_j geteilten Hilfsvariablen impliziert und
 - diese Gleichung aber noch nicht von F_j in T_j impliziert wird,

dann füge diese Gleichung zu F_i hinzu und gehe wieder zu Schritt 2.

A Rückgabe SAT

